Ins Innerste geschaut: Computertomograph spürt Poren im Aluminiumguss zerstörungsfrei auf

Sie wirken organisch, fast schon künstlerisch. Es sind graphisch dargestellte Schwindungsporen in Aluminiumlegierungen, die Forscher des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF mit Hilfe eines Computer-Tomographen (CT) abbilden. Auf diesem Wege kommen sie Fehlern in Bauteilen aus Aluminiumguss auf die Schliche. Ihr Konzept ermöglicht die Entwicklung von zuverlässigen, weitergehend optimierten Aluminiumgusstei-len, deren Qualität erstmals zerstörungsfrei geprüft werden kann. Vor allem für Gießereien und die Produktion von Fahrwerksteilen, Motorenkomponenten und Maschinenbauteilen in der Automobilindustrie und des Maschinenbaus eignet sich das Verfahren. Qualitätskriterien für Gussbauteile können damit stärker auf ihre Eigenschaften zugeschnitten werden und Eigenschaftsstreuungen von Fertigungschargen lassen sich anhand von CT-Aufnahmen beurteilen.

Ins Innerste geschaut: Computertomograph spürt Poren im Aluminiumguss zerstörungsfrei auf

(ddp direct) Bei der Herstellung von Aluminiumgussteilen kommt es auf eine materialeffiziente und kostengünstige Konstruktion an. Um einen dauerhaften Wettbewerbsvorteil zu sichern, müssen die mechanischen Eigenschaften von Aluminiumgussteilen zuverlässig gewährleistet werden. Dies ist möglich, wenn die Festigkeiten von der Produktentwicklung bis zur Serienfertigung kontrolliert werden können. Die häufigsten Fehler in Gusskomponenten aus Aluminium-Legierungen sind Porositäten, die bei der Fertigung entstehen. Soll die Lebensdauer solch fehlerhafter Bauteile analysiert werden, müssen Form, Größe, Lage und Verteilung der Poren und Einschlüsse berücksichtigt werden. Diese sind bei zyklisch belasteten Bauteilen entscheidend für die Lebensdauer.

Die Wissenschaftler des Fraunhofer LBF entwickelten unter Berücksichtigung von geometrischen Kenngrößen des Defekts ein Parametermodell zur Lebensdauerberechnung. Damit ist es möglich, die Schwingfestigkeit von Aluminiumgussteilen auf Basis von zerstörungsfreien Prüfungen quantitativ zu ermitteln. Das Modell lässt sich auf alle Aluminiumgussbauteile anwenden. Die Darmstädter Wissenschaftler entwickelten es im AiF-Forschungsprojekt „EPOS – Entwicklung und Integration von Beurteilungskriterien zur Qualitätssicherung und Bauteilberechnung unter Berücksichtigung des Einflusses von Poren und nichtmetallischen Verunreinigungen auf die Schwingfestigkeit von Aluminium-Gusslegierungen“ des Bundesverbandes der Deutschen Gießerei-Industrie (BDG).

Qualität zerstörungsfrei prüfen

Für die zerstörungsfreien Prüfungen an Schwingfestigkeitsproben aus Aluminiumlegie­rungen nutzten die LBF-Forscher einen Computertomographen. Sie ermittelten dreidi­mensionale Geometrieinformationen der Porositäten, aus denen sie relevante Kenn­größen ableiteten. Anschließend wurde die Wirkung der Porositäten auf die örtlichen Beanspruchungen im Gefüge, in Hinblick auf die Form, Größe und Lage der Poren, untersucht und quantifiziert. Im ersten Schritt erstellten die Wissenschaftler Finite Element Modelle für kugelförmige Poren, welche die untersuchten Gefüge aus Sicht der inneren Beanspruchung ingenieurmäßig sinnvoll abbilden. Im Weiteren folgten Finite Element Modelle der realitätsnahen Gefügeinhomogenitäten.

Anhand der von der Computertomographie rekonstruierten Mikrostrukturen der Pro­ben aus Aluminiumlegierungen wurden die mikromechanischen Beanspruchungen abgebildet und parametriert. Darüber hinaus brachten die Forscher die innere Kerbwir­kung in Zusammenhang zu den charakteristischen Geometriekennwerten der Porositäten und leiteten aus diesen Ergebnissen ein parametriertes Lebensdauermodell ab. Um das Modell zu validieren, führten sie an den ungekerbten Proben Schwingfes­tigkeitsuntersuchungen durch.

Das erarbeitete Lebensdauermodell ermöglicht die Ableitung von dreidimensionalen Grenzmusterbauteilen, welche die zulässigen Porositäten darstellen. Grundsätzlich besteht damit die Möglichkeit, die Schwingfestigkeitseigenschaften von Aluminium­gussteilen auf Basis von zerstörungsfreien Prüfverfahren quantitativ ohne Versuche oder FEM-Berechnungen zu bewerten.

Shortlink zu dieser Pressemitteilung:
http://shortpr.com/p65iqj

Permanentlink zu dieser Pressemitteilung:
http://www.themenportal.de/kfz-markt/ins-innerste-geschaut-computertomograph-spuert-poren-im-aluminiumguss-zerstoerungsfrei-auf-91605

=== Schwindungsporen aus zerstörungsfreier Prüfung mit Korrelation zwischen den berechneten Kerbformzahlen und Ergebnissen aus FEM-Berechnungen. (Bild) ===

Shortlink:
http://shortpr.com/ribkk6

Permanentlink:
http://www.themenportal.de/bilder/schwindungsporen-aus-zerstoerungsfreier-pruefung-mit-korrelation-zwischen-den-berechneten-kerbformzahlen-und-ergebnissen-aus-fem-berechnungen

Das Fraunhofer LBF unter Leitung von Professor Holger Hanselka entwickelt, bewertet und realisiert im Kundenauftrag maßgeschneiderte Lösungen für maschinenbauliche Komponenten und Systeme, vor allem für sicherheitsrelevante Bauteile und Systeme. Der Leichtbau steht dabei im Zentrum der Überlegungen. Neben der Bewertung und optimierten Auslegung passiver mechanischer Strukturen werden aktive, mechatronisch-adaptronische Funktionseinheiten entwickelt und proto-typisch umgesetzt. Parallel werden entsprechende numerische sowie experimentelle Methoden und Prüftechniken vorausschauend weiterentwickelt. Die Auftraggeber kommen aus dem Automobil- und Nutzfahrzeugbau, der Schienenverkehrstechnik, dem Schiffbau, der Luftfahrt, dem Maschinen- und Anlagenbau, der Energietechnik, der Elektrotechnik, dem Bauwesen, der Medizintechnik, der chemischen Industrie und weiteren Branchen. Sie profitieren von ausgewiesener Expertise der rund 500 Mitarbeiter und modernste Technologie auf mehr als 11 560 Quadratmeter Labor- und Versuchsfläche an den Standorten Bartningstraße und Schlossgartenstraße.

Kontakt:
Fraunhofer LBF
Anke Zeidler-Finsel
Bartningstraße 47
64289 Darmstadt
06151/705-268
anke.zeidler-finsel@lbf.fraunhofer.de
http://shortpr.com/p65iqj

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht.


CAPTCHA-Bild
Bild neu laden